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Agenda

 Explain core x86/x86_64 virtualisation 
techniques
 Focus on CPU virtualisation
 Not on virtualisation of other devices

 Show various examples of exploitable bugs
 In CPU virtualisation only
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Virtualisation security (VS)

 Ideally
 different guests behave like different physical 

machines

 It's an obvious requirement for many use cases
 Workload consolidation
 Workload isolation
 Testing
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VS: isolation

 Isolation is a fundamental requirement
 Popek and Goldberg in 1974

 Secure isolation of virtual machines
 Guest → Host
 Guest → Guest

 Host → Guest is ok (and usually trivial)
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VS: equivalence

 From Popek and Goldberg:
 A program running under the VMM should exhibit a 

behavior essentially identical to that demonstrated 
when running on an equivalent machine directly

 Virtualisation needs to be correct
 Should not introduce new flaws to guest OS
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VS: detection

 Detecting a virtual machine
 Possible, usually quite easy
 Could be made impossible in theory?

 No-one will probably ever have an incentive to do this
 More and more useless as virtualisation becomes 

mainstream

 Not mentioned anymore in this talk
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VS: aspects

1.Core system emulation (CPU, memory etc...)

2.Devices emulation

3.Guest to Host communications

(2) and (3) previously discussed

We focus on a part of (1) today
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VS: previous work

 Mostly things running in Ring3 on the host
 Bugs in Guest/Host communication

 VMware shared folders (IDefense, CORE)

 Bugs in devices emulation
 VMware NAT Networking (Tim Shelton)
 'Bitblt'-style bugs in video emulation (Tavis, Rafal, 

Kostya)
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Bitblt-style bugs*

 BLT = block transfer on PDP-10
 BITBLT refers to any algorithm to copy 

rectangles of bits on a bit-mapped device
 Bugs in display devices emulating code

 Complex devices to emulate
 Bitblt non trivial
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Bitblt-style bugs

 QEMU VGA device (Tavis Ormandy)
 QEMU device emulation used in Xen/Virtualbox as 

well

 Xen's para-virtual framebuffer (Rafal Wojtczuk)
 Check ITL's paper

 VMware Cloudburst-related bugs (Kostya 
Kortchinsky)
 See cool hacking in 3D
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Bitblt-bugs exploitable from guest 
Ring3 ?

 Most device emulators should only be 
exploitable from guest kernel

 In some cases, enough control from Ring3
 In some display devices, lots of pass-through from 

Ring3 to the device emulator
 And from device emulator to the host's driver

 Remember remote Nvidia vuln ? (CVE-2006-5379, 
Rapid7)

 From a web page visited in Guest to Host Ring0 ?
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VS: Core system/CPU emulation*

 Two aspects

1.Privilege elevation in Guest

2.Guest to Host escapes?

 Not many public bugs
 Quite well tested area (every OS is a potential 

fuzzer)
 Complex area, hard to debug
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X86 virtualisation

 A challenge
 Not virtualisable in Popek and Goldberg's sense
 Described by John Scott Robin and Cynthia E. 

Irvine in 1999

 Often poorly understood
 Essentialy driven by VMWare (closed-source) for 

many years
 Requires good low-level understanding
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X86 virtualisation today

 Available today (for both x86 and x86_64)
 Full virtulisation (Bochs, QEMU)
 Paravirtualisation (Xen, VMware)
 VMware-style (VMware, VirtualPC, VirtualBox...)
 Hardware virtualisation (Xen, VMWare, VirtualPC, 

VirtualBox, KVM...)
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Full virtualisation

 Started with Bochs (simulation)
 QEMU uses dynamic translation to make it fast
 Principle

 Emulate devices in userland
 Emulate the CPU by translating native instructions 

to instructions for the host CPU

 Is not Popek and Goldberg virtualisation
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Trap&Emulate virtualisation 
strategy

 VMM runs with full privileges (Ring 0)
 Run the guest kernel at lower privilege

 Privileged instructions trap
 VMM catches the trap and emulates the instruction

 Run userland code ”as is”
 Somehow find a way to isolate kernel code 

from userland code
 ideally other privilege level if available
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X86 challenges

 17 instructions don't meet Popek and Goldberg 
criteria
 Detailed by K. Lawton and S. Robin

 Non faulting access to privileged state
 SGDT, SLDT, SIDT, SMSW, PUSHF...

 Behave defferently at lower privileges w/o trap
 POPF, LAR...
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Binary translation

 Introduced into VMware in 1999
 Now used by Virtual PC, VirtualBox...

 Deprivilege the kernel to execute in ring 1
 Dynamically modify kernel code to overcome 

limitations
 BT translating all kernel code is slower
 But offers lots of opportunity to optimize things 

(prevent expensive traps)
 They managed to make this fast
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VMware-style: CPU (1)

 VMM runs in Ring0
 Device emulation runs in Ring3 on host
 Guest kernels run in Ring1

 protected from guest Ring3 by pagination as usual

 Pagination can not isolate the Ring 0 VMM from 
ring1 (ring{0,1,2} = supervisor)
 Use segmentation instead
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VMware-style: CPU (2)

 Ring3 mostly runs ”as is”
 You can access privileged states from Ring3

 SGDT, SIDT, (SLDT) reveals locations of the real 
tables (inside the VMM, on top of address space)

 Real tables = shadow tables
 This is the true explaination for redpill
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VMware-style virtualisation
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VMware-style security and BT

 BT takes care of GS: overrides. GS segment 
can access VMM!

 If BT confusion, instant ring0 (guest → host 
escape!)
 VMware's BT seems of good quality
 What about others?

 BT is fragile and can be broken by CPU errata
 Not very well studied
 Stay tuned
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VMware-style security: more

 Shadow paging complexities
 Handling all subtleties like a real CPU is 

complex
 What we called ”correctness” before
 Mostly leads to guest privilege escalation
 We will show examples of those
 Can be seen as ”Virtual CPU errata”

 And could be worked-around by OS in theory



24

Augmenting VMware-style's 
attack surface

 Full emulation mode not very often used
 But we can reach it from guest by using ED 

segments

 Many other things are not done by regular 
kernels
 attacks should be conducted from Ring1
 Or with IOPL != 0
 Yet it's much easier to focus on Ring3
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Ex1: VirtualPC instruction decoding*

 Tavis Ormandy, Julien Tinnes (CVE-2009-1542)

 Some privileged instructions could be executed from Ring3

 wbinvd, clts execute in cpl > 0

 rdpmc ignores cr4.PCE

 Explanation:

 They do fault, but VirtualPC catches the exception
 Wrongly checks the privilege and emulate the 

instruction
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Ex1: VirtualPC clts decoding exploitation (1)

 clts clears cr0.TS

 The TS flag is set on task-switches

 The TS flag is tested on every executed FPU instruction by 
the processor. If set, raise #NM

 Most OS don't use hardware task switching

 They handle task switches in software

 And set cr0.TS manually, but only if needed (if previous 
process used FPU and the flag got cleared)
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Ex1: VirtualPC clts decoding exploitation (2)

 If you unexpectedly clear TS by using this bug, it will be 
forever unset

 No FPU instruction will ever trap
 The operating system will never know that any FPU 

instruction occured
 All processes will share the same FPU state

 Did we say FPU ?

 We mean FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4
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Ex2: VMware, Trap Flag Set by IRET Not 
Cleared for CCh Instruction*

 Derek Soeder (CVE-2008-4915)

 User code can cause an exception at the very first 
instruction of the INT3 handler

 Some kernels may rely on this to never happen for security

 Windows 64 expects a particular prologue executed if 
an exception occurs from Ring0

 Otherwise, kernel's GS register stays user-controlled

”The Trap Flag persists across the mode switch when a single-byte 
"INT3" instruction (CCh only, not CDh/03h) executes, if the Trap Flag 
was set by a kernel-mode IRET”
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Ex3: VMware Mishandled Exception on Page 
Faults*

 Tavis Ormandy, Julien Tinnes (CVE-2009-2267)

 VMware advisory published last week

 Bug in the core CPU emulation
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Ex3: Page Fault Exceptions

 A page fault exception occurs when code...

 Attempts to access a non-present page
 Has insufficent privilege to access a present page
 Other paging related errors

 The handler is passed a set of flags describing the error
I/D U/S W/R P

 I/D  – Instruction / Data Fetch

 U/S  – User / Supervisor Mode

 W/R  – Read / Write access

 P    – Present / Not present
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Ex3: Supervisor Mode

 If the processor is privileged when the exception occurs, 
the supervisor bit is set

 Operating system kernels can use this to detect when 
special conditions occurs

 This could mean a kernel bug is encountered.

 Oops, BugCheck, Panic, etc.
 Or an unusual low-level event

 Can also happen in specific situations (copy-from-user 
etc...)

 If the processor can be tricked into setting the flag 
incorrectly, ring3 code can confuse privileged code.
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Ex3: VMware Invalid #PF Code

 We found a way to cause VMware to set the supervisor bit for 
usermode page faults.

 Far calls in Virtual-8086 mode were emulated incorrectly.

 When the cs:ip pair are pushed onto the stack, they are 
done so with supervisor access.

 We were able to exploit this to gain ring0 in VMware guests.
 Linux checks for a magic CS value to check for PNPBIOS 

support, we were able to use this feature to redirect kernel 
execution to NULL.

 But, because we're in Virtual-8086 mode we must be 
permitted any value cs.
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Ex3: VMware Exploit

 We mmap() shellcode at NULL, then enter vm86 mode

 We found a separate vulnerability to bypass 
mmap_min_addr (CVE-2009-1895)

 When we far call with a non-present page at ss:sp, a #PF is 
delivered.

 Because we can spoof arbitrary cs, we set a value that the 
kernel recognises as a PNPBIOS fault.

 The kernel tries to call the fault handler.
 But because this is not a real fault, the handler will be NULL

 r00t :-)

 Demo!
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Paravirtualisation: Xen*

 Instead of doing BT on the guest kernel, require 
the guest kernel to be modified

 Uses Ring deprivileging as well (and VMM on 
top of address space)

 The kernel performs hypercalls to the 
hypervisor
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Paravirtualisation vs. BT

 VMware-style: the guest kernel (in Ring1) is 
under tight BT control
 Uses both BT and segmentation to protect VMM
 BT can try and prevent Ring1 code from performing 

attacks
 But arbitrary Ring1 code = instant ring0 (access to 

VMM)

 Paravirtualisation
 Arbitrary Ring1 doesn't imply arbitrary Ring0
 But Ring1 is contained by segmentation only
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64 bits virtualisation (1)

 AMD dropped segmentation
 Many cool security features impossible on x86_64

 PaX' UDEREF (and others) kernel protections
 NativeClient would be very different in 64 bits

 We will miss it forever
 Hardware virtualisation supposed to make up 

for this
 More on this later
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64 bits virtualisation (2)

 How would you prevent Ring1 from accessing 
VMM ?

 VMware
 Tighter, (way) more complex BT ?
 Never implemented as far as we know

 Xen
 Put guest kernel in Ring3. (Ring compression)
 Full address space switching to protect guest kernel
 Big performance hit

 TLB cache filter buggy and deprecated
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64 bits: AMD brings back 
segmentation
64-bit Segment Limit Check Mechanism:
– Assume segment-addressed access of form SEG:ADDR
– if ( 64bit_mode && EFER[13] && (CPL > 0) &&
        (SEG==DS || SEG==ES || SEG==FS || SEG==SS) )
     { limit = (SEG.G ? (SEG.limit << 12)+0xFFF : 
0xFFF)));
         if (ADDR > ((0xFFFF << 32) + limit))
            generate_std_segment_limit_GP_fault();
      }

 Very secretive (still not in official doc)
 Bare minimum for VMware

 No CS check (code offset controled by BT anyway)
 No GS limit check

 VMware rewrites GS-overrides and uses them to access 
the VMM.
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64 bits virtualisation impact

 Long mode supports 64 bits and compatibility 
(32 bits) submode

 A 64 bits operating system typically supports 
both

 64 bits adds complexity
 Example: far call to 32 bits code segment in a 64 

bits process on a 64 bits kernel on a 32 bits host
 No, there is no typo

 Address space switching on Xen non trivial
 Any optimization on this might introduce exploitable 

bugs
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Ex4: VMware, Interrupt Can Occur at Non-
Canonical RIP After Indirect Jump

 Derek Soeder (CVE-2008-4279)

 In 64 bits, there are canonical and non canonical addresses

 48-bits addresses (sign extended to 64 bits)
 jmp [mem] to a non canonical location will #GP at jmp 

instruction

 In VMware, only the next one would #GP

 Exploitation

 Windows 64 expects a particular prologue executed if an 
exception occurs from Ring0 and a particular epilogue has 
not executed yet

 Using this, you can make the #GP handler #GP on iretq
 The kernel will use the restored user-controlled GS
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Hardware virtualisation*

 Fast and secure virtualisation on IA32 is 
challenging

 Without segmentation, x86_64 would be harder 
and slower
 (AMD brought segmentation back on AMD64 for 

VMware only later)

 Hardware virtualisation allows the architecture 
to meet Popek and Goldberg's criterion

 Two incompatible designs, AMD SVM and Intel 
VT-x
 Greatly lowers the bar to write an hypervisor
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Hardware virtualisation (VT-x)

 Two new forms of CPU operation: VMX root 
and VMX non root

 VMM: root operation – Guest: non root 
operation

 Transitions: VM entry / VM exit
 Managed by a VMCS structure

 VMCS also manages behavior in VMX non-root 
operation
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Hardware virtualisation (VT-x)

 Popek and Goldberg compliant
 No Address space compression required

 VMM can live in its own address space

 No ring compression
 No more non faulting access to privileged state
 No longer instructions that perform a different 

action in lower privileges w/ no trap
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Ex5: Virtual PC Vmexit Event Confusion

 Tavis Ormandy, Julien Tinnes (CVE-2009-3827)

 When a vmexit occurs, an exit reason is recorded in an MSR, 
which the monitor can then inspect

 Two interesting reasons are MOV_DR and MOV_CR

 MOV_CR indicates the guest accessed a control register
 MOV_DR indicates the guest accessed a debug register

 When the host decodes the reason for the exit, it can decide 
what to do, and then continue the guest.
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Ex5: Virtual PC Vmexit Event Confusion

 The MOV_DR and MOV_CR events are very similar.

 It's tempting to handle them using the same monitor code, but 
there is an important difference

 MOV_CR will check the guest cpl before vmexit
 MOV_DR will not check cpl.

 VirtualPC made this error in hardware virtualisation mode.

 We can set the debug registers from ring3!
 This can easily be used for DoS (just make the guest kernel 

double fault), but there may be more attacks (DR7?)
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Ex6: KVM Vmexit Event Confusion

 The same bug was found in KVM (CVE-2009-3722)

 Found (independantly) by Avi Kivity in september 2009

static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
         unsigned long val;
         int dr, reg;   
+        if (!kvm_require_cpl(vcpu, 0)) 
+               return 1;
         dr = vmcs_readl(GUEST_DR7);
         if (dr & DR7_GD) {                 

 The Intel documention could be clearer on this point
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Conclusion*

 The biggest attack surface to virtualisation is 
from the guest kernel
 Device emulators and other Guest <-> Host 

communication
 Bypassing binary translation in VMware

 Guest privilege escalation as a first stage
 Intel CPU virtualisation is complex

 Inaccuracies can quickly lead to guest local 
privilege escalation (like CPU errata)

 Including very small details
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Thank you!

 Questions?
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Appendix
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Hardware virtualisation already 
existed on IA32

 VM86 to allow 8086 emulation
 Good introduction to hardware virtualisation
 Most of the code executes 'as is'
 The processor leaves VM86 though interrupts 

and exception
 HW interrupt
 IOPL-Sensitive instructions (CLI, STI, PUSHF, 

POPF, INT n, IRET)
 Gives a chance to the VM86 monitor to emulate 

them
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VMware-style: shadow paging

 The VMM needs to virtualize memory access
 The guest maintains primary structures
 The VMM maintains shadow structures

 as seen by the processor

 There is not a 1:1 mapping between them
 The shadow structure can be viewed as a cache of 

primary structures

 The logic leaves room for optimization
 And can be complex
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More hardware virtualisation

 VT-d (IOMMU)
 Hardware virtualisation is actually slower than 

VMware-style virtualisation in many use cases
 VMM intervention on guest context switches
 VM exits are very expensive
 This should be solved by nested paging (Intel EPT)



54

Ex: VMCI priv escalation

 VMSA-2009-0005
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Ex: KVM hypercalls

 CVE-2009-3290



56

Ex: Windows VDM Zero Page Race Condition 
Local Privilege Escalation Vulnerability

 Derek Soeder (CVE-2007-1206)
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Ex: Xen debug register handling

 Jan Beulich (CVE-2007-5906)
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