
Virtualisation security
and the Intel privilege model

Tavis Ormandy, Julien Tinnes
Google Inc.

2

Agenda

 Explain core x86/x86_64 virtualisation
techniques
 Focus on CPU virtualisation
 Not on virtualisation of other devices

 Show various examples of exploitable bugs
 In CPU virtualisation only

3

Virtualisation security (VS)

 Ideally
 different guests behave like different physical

machines

 It's an obvious requirement for many use cases
 Workload consolidation
 Workload isolation
 Testing

4

VS: isolation

 Isolation is a fundamental requirement
 Popek and Goldberg in 1974

 Secure isolation of virtual machines
 Guest → Host
 Guest → Guest

 Host → Guest is ok (and usually trivial)

5

VS: equivalence

 From Popek and Goldberg:
 A program running under the VMM should exhibit a

behavior essentially identical to that demonstrated
when running on an equivalent machine directly

 Virtualisation needs to be correct
 Should not introduce new flaws to guest OS

6

VS: detection

 Detecting a virtual machine
 Possible, usually quite easy
 Could be made impossible in theory?

 No-one will probably ever have an incentive to do this
 More and more useless as virtualisation becomes

mainstream

 Not mentioned anymore in this talk

7

VS: aspects

1.Core system emulation (CPU, memory etc...)

2.Devices emulation

3.Guest to Host communications

(2) and (3) previously discussed

We focus on a part of (1) today

8

VS: previous work

 Mostly things running in Ring3 on the host
 Bugs in Guest/Host communication

 VMware shared folders (IDefense, CORE)

 Bugs in devices emulation
 VMware NAT Networking (Tim Shelton)
 'Bitblt'-style bugs in video emulation (Tavis, Rafal,

Kostya)

9

Bitblt-style bugs*

 BLT = block transfer on PDP-10
 BITBLT refers to any algorithm to copy

rectangles of bits on a bit-mapped device
 Bugs in display devices emulating code

 Complex devices to emulate
 Bitblt non trivial

10

Bitblt-style bugs

 QEMU VGA device (Tavis Ormandy)
 QEMU device emulation used in Xen/Virtualbox as

well

 Xen's para-virtual framebuffer (Rafal Wojtczuk)
 Check ITL's paper

 VMware Cloudburst-related bugs (Kostya
Kortchinsky)
 See cool hacking in 3D

11

Bitblt-bugs exploitable from guest
Ring3 ?

 Most device emulators should only be
exploitable from guest kernel

 In some cases, enough control from Ring3
 In some display devices, lots of pass-through from

Ring3 to the device emulator
 And from device emulator to the host's driver

 Remember remote Nvidia vuln ? (CVE-2006-5379,
Rapid7)

 From a web page visited in Guest to Host Ring0 ?

12

VS: Core system/CPU emulation*

 Two aspects

1.Privilege elevation in Guest

2.Guest to Host escapes?

 Not many public bugs
 Quite well tested area (every OS is a potential

fuzzer)
 Complex area, hard to debug

13

X86 virtualisation

 A challenge
 Not virtualisable in Popek and Goldberg's sense
 Described by John Scott Robin and Cynthia E.

Irvine in 1999

 Often poorly understood
 Essentialy driven by VMWare (closed-source) for

many years
 Requires good low-level understanding

14

X86 virtualisation today

 Available today (for both x86 and x86_64)
 Full virtulisation (Bochs, QEMU)
 Paravirtualisation (Xen, VMware)
 VMware-style (VMware, VirtualPC, VirtualBox...)
 Hardware virtualisation (Xen, VMWare, VirtualPC,

VirtualBox, KVM...)

15

Full virtualisation

 Started with Bochs (simulation)
 QEMU uses dynamic translation to make it fast
 Principle

 Emulate devices in userland
 Emulate the CPU by translating native instructions

to instructions for the host CPU

 Is not Popek and Goldberg virtualisation

16

Trap&Emulate virtualisation
strategy

 VMM runs with full privileges (Ring 0)
 Run the guest kernel at lower privilege

 Privileged instructions trap
 VMM catches the trap and emulates the instruction

 Run userland code ”as is”
 Somehow find a way to isolate kernel code

from userland code
 ideally other privilege level if available

17

X86 challenges

 17 instructions don't meet Popek and Goldberg
criteria
 Detailed by K. Lawton and S. Robin

 Non faulting access to privileged state
 SGDT, SLDT, SIDT, SMSW, PUSHF...

 Behave defferently at lower privileges w/o trap
 POPF, LAR...

18

Binary translation

 Introduced into VMware in 1999
 Now used by Virtual PC, VirtualBox...

 Deprivilege the kernel to execute in ring 1
 Dynamically modify kernel code to overcome

limitations
 BT translating all kernel code is slower
 But offers lots of opportunity to optimize things

(prevent expensive traps)
 They managed to make this fast

19

VMware-style: CPU (1)

 VMM runs in Ring0
 Device emulation runs in Ring3 on host
 Guest kernels run in Ring1

 protected from guest Ring3 by pagination as usual

 Pagination can not isolate the Ring 0 VMM from
ring1 (ring{0,1,2} = supervisor)
 Use segmentation instead

20

VMware-style: CPU (2)

 Ring3 mostly runs ”as is”
 You can access privileged states from Ring3

 SGDT, SIDT, (SLDT) reveals locations of the real
tables (inside the VMM, on top of address space)

 Real tables = shadow tables
 This is the true explaination for redpill

21

VMware-style virtualisation

22

VMware-style security and BT

 BT takes care of GS: overrides. GS segment
can access VMM!

 If BT confusion, instant ring0 (guest → host
escape!)
 VMware's BT seems of good quality
 What about others?

 BT is fragile and can be broken by CPU errata
 Not very well studied
 Stay tuned

23

VMware-style security: more

 Shadow paging complexities
 Handling all subtleties like a real CPU is

complex
 What we called ”correctness” before
 Mostly leads to guest privilege escalation
 We will show examples of those
 Can be seen as ”Virtual CPU errata”

 And could be worked-around by OS in theory

24

Augmenting VMware-style's
attack surface

 Full emulation mode not very often used
 But we can reach it from guest by using ED

segments

 Many other things are not done by regular
kernels
 attacks should be conducted from Ring1
 Or with IOPL != 0
 Yet it's much easier to focus on Ring3

25

Ex1: VirtualPC instruction decoding*

 Tavis Ormandy, Julien Tinnes (CVE-2009-1542)

 Some privileged instructions could be executed from Ring3

 wbinvd, clts execute in cpl > 0

 rdpmc ignores cr4.PCE

 Explanation:

 They do fault, but VirtualPC catches the exception
 Wrongly checks the privilege and emulate the

instruction

26

Ex1: VirtualPC clts decoding exploitation (1)

 clts clears cr0.TS

 The TS flag is set on task-switches

 The TS flag is tested on every executed FPU instruction by
the processor. If set, raise #NM

 Most OS don't use hardware task switching

 They handle task switches in software

 And set cr0.TS manually, but only if needed (if previous
process used FPU and the flag got cleared)

27

Ex1: VirtualPC clts decoding exploitation (2)

 If you unexpectedly clear TS by using this bug, it will be
forever unset

 No FPU instruction will ever trap
 The operating system will never know that any FPU

instruction occured
 All processes will share the same FPU state

 Did we say FPU ?

 We mean FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4

28

Ex2: VMware, Trap Flag Set by IRET Not
Cleared for CCh Instruction*

 Derek Soeder (CVE-2008-4915)

 User code can cause an exception at the very first
instruction of the INT3 handler

 Some kernels may rely on this to never happen for security

 Windows 64 expects a particular prologue executed if
an exception occurs from Ring0

 Otherwise, kernel's GS register stays user-controlled

”The Trap Flag persists across the mode switch when a single-byte
"INT3" instruction (CCh only, not CDh/03h) executes, if the Trap Flag
was set by a kernel-mode IRET”

29

Ex3: VMware Mishandled Exception on Page
Faults*

 Tavis Ormandy, Julien Tinnes (CVE-2009-2267)

 VMware advisory published last week

 Bug in the core CPU emulation

30

Ex3: Page Fault Exceptions

 A page fault exception occurs when code...

 Attempts to access a non-present page
 Has insufficent privilege to access a present page
 Other paging related errors

 The handler is passed a set of flags describing the error
I/D U/S W/R P

 I/D – Instruction / Data Fetch

 U/S – User / Supervisor Mode

 W/R – Read / Write access

 P – Present / Not present

31

Ex3: Supervisor Mode

 If the processor is privileged when the exception occurs,
the supervisor bit is set

 Operating system kernels can use this to detect when
special conditions occurs

 This could mean a kernel bug is encountered.

 Oops, BugCheck, Panic, etc.
 Or an unusual low-level event

 Can also happen in specific situations (copy-from-user
etc...)

 If the processor can be tricked into setting the flag
incorrectly, ring3 code can confuse privileged code.

32

Ex3: VMware Invalid #PF Code

 We found a way to cause VMware to set the supervisor bit for
usermode page faults.

 Far calls in Virtual-8086 mode were emulated incorrectly.

 When the cs:ip pair are pushed onto the stack, they are
done so with supervisor access.

 We were able to exploit this to gain ring0 in VMware guests.
 Linux checks for a magic CS value to check for PNPBIOS

support, we were able to use this feature to redirect kernel
execution to NULL.

 But, because we're in Virtual-8086 mode we must be
permitted any value cs.

33

Ex3: VMware Exploit

 We mmap() shellcode at NULL, then enter vm86 mode

 We found a separate vulnerability to bypass
mmap_min_addr (CVE-2009-1895)

 When we far call with a non-present page at ss:sp, a #PF is
delivered.

 Because we can spoof arbitrary cs, we set a value that the
kernel recognises as a PNPBIOS fault.

 The kernel tries to call the fault handler.
 But because this is not a real fault, the handler will be NULL

 r00t :-)

 Demo!

34

Paravirtualisation: Xen*

 Instead of doing BT on the guest kernel, require
the guest kernel to be modified

 Uses Ring deprivileging as well (and VMM on
top of address space)

 The kernel performs hypercalls to the
hypervisor

35

Paravirtualisation vs. BT

 VMware-style: the guest kernel (in Ring1) is
under tight BT control
 Uses both BT and segmentation to protect VMM
 BT can try and prevent Ring1 code from performing

attacks
 But arbitrary Ring1 code = instant ring0 (access to

VMM)

 Paravirtualisation
 Arbitrary Ring1 doesn't imply arbitrary Ring0
 But Ring1 is contained by segmentation only

36

64 bits virtualisation (1)

 AMD dropped segmentation
 Many cool security features impossible on x86_64

 PaX' UDEREF (and others) kernel protections
 NativeClient would be very different in 64 bits

 We will miss it forever
 Hardware virtualisation supposed to make up

for this
 More on this later

37

64 bits virtualisation (2)

 How would you prevent Ring1 from accessing
VMM ?

 VMware
 Tighter, (way) more complex BT ?
 Never implemented as far as we know

 Xen
 Put guest kernel in Ring3. (Ring compression)
 Full address space switching to protect guest kernel
 Big performance hit

 TLB cache filter buggy and deprecated

38

64 bits: AMD brings back
segmentation
64-bit Segment Limit Check Mechanism:
– Assume segment-addressed access of form SEG:ADDR
– if (64bit_mode && EFER[13] && (CPL > 0) &&
 (SEG==DS || SEG==ES || SEG==FS || SEG==SS))
 { limit = (SEG.G ? (SEG.limit << 12)+0xFFF :
0xFFF)));
 if (ADDR > ((0xFFFF << 32) + limit))
 generate_std_segment_limit_GP_fault();
 }

 Very secretive (still not in official doc)
 Bare minimum for VMware

 No CS check (code offset controled by BT anyway)
 No GS limit check

 VMware rewrites GS-overrides and uses them to access
the VMM.

39

64 bits virtualisation impact

 Long mode supports 64 bits and compatibility
(32 bits) submode

 A 64 bits operating system typically supports
both

 64 bits adds complexity
 Example: far call to 32 bits code segment in a 64

bits process on a 64 bits kernel on a 32 bits host
 No, there is no typo

 Address space switching on Xen non trivial
 Any optimization on this might introduce exploitable

bugs

40

Ex4: VMware, Interrupt Can Occur at Non-
Canonical RIP After Indirect Jump

 Derek Soeder (CVE-2008-4279)

 In 64 bits, there are canonical and non canonical addresses

 48-bits addresses (sign extended to 64 bits)
 jmp [mem] to a non canonical location will #GP at jmp

instruction

 In VMware, only the next one would #GP

 Exploitation

 Windows 64 expects a particular prologue executed if an
exception occurs from Ring0 and a particular epilogue has
not executed yet

 Using this, you can make the #GP handler #GP on iretq
 The kernel will use the restored user-controlled GS

41

Hardware virtualisation*

 Fast and secure virtualisation on IA32 is
challenging

 Without segmentation, x86_64 would be harder
and slower
 (AMD brought segmentation back on AMD64 for

VMware only later)

 Hardware virtualisation allows the architecture
to meet Popek and Goldberg's criterion

 Two incompatible designs, AMD SVM and Intel
VT-x
 Greatly lowers the bar to write an hypervisor

42

Hardware virtualisation (VT-x)

 Two new forms of CPU operation: VMX root
and VMX non root

 VMM: root operation – Guest: non root
operation

 Transitions: VM entry / VM exit
 Managed by a VMCS structure

 VMCS also manages behavior in VMX non-root
operation

43

Hardware virtualisation (VT-x)

 Popek and Goldberg compliant
 No Address space compression required

 VMM can live in its own address space

 No ring compression
 No more non faulting access to privileged state
 No longer instructions that perform a different

action in lower privileges w/ no trap

44

Hardware virtualisation (VT-x)

 Popek and Goldberg compliant
 No Address space compression required

 VMM can live in its own address space

 No ring compression
 No more non faulting access to privileged state
 No longer instructions that perform a different

action in lower privileges w/ no trap

45

Ex5: Virtual PC Vmexit Event Confusion

 Tavis Ormandy, Julien Tinnes (CVE-2009-3827)

 When a vmexit occurs, an exit reason is recorded in an MSR,
which the monitor can then inspect

 Two interesting reasons are MOV_DR and MOV_CR

 MOV_CR indicates the guest accessed a control register
 MOV_DR indicates the guest accessed a debug register

 When the host decodes the reason for the exit, it can decide
what to do, and then continue the guest.

46

Ex5: Virtual PC Vmexit Event Confusion

 The MOV_DR and MOV_CR events are very similar.

 It's tempting to handle them using the same monitor code, but
there is an important difference

 MOV_CR will check the guest cpl before vmexit
 MOV_DR will not check cpl.

 VirtualPC made this error in hardware virtualisation mode.

 We can set the debug registers from ring3!
 This can easily be used for DoS (just make the guest kernel

double fault), but there may be more attacks (DR7?)

47

Ex6: KVM Vmexit Event Confusion

 The same bug was found in KVM (CVE-2009-3722)

 Found (independantly) by Avi Kivity in september 2009

static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
 unsigned long val;
 int dr, reg;
+ if (!kvm_require_cpl(vcpu, 0))
+ return 1;
 dr = vmcs_readl(GUEST_DR7);
 if (dr & DR7_GD) {

 The Intel documention could be clearer on this point

48

Conclusion*

 The biggest attack surface to virtualisation is
from the guest kernel
 Device emulators and other Guest <-> Host

communication
 Bypassing binary translation in VMware

 Guest privilege escalation as a first stage
 Intel CPU virtualisation is complex

 Inaccuracies can quickly lead to guest local
privilege escalation (like CPU errata)

 Including very small details

49

Thank you!

 Questions?

50

Appendix

51

Hardware virtualisation already
existed on IA32

 VM86 to allow 8086 emulation
 Good introduction to hardware virtualisation
 Most of the code executes 'as is'
 The processor leaves VM86 though interrupts

and exception
 HW interrupt
 IOPL-Sensitive instructions (CLI, STI, PUSHF,

POPF, INT n, IRET)
 Gives a chance to the VM86 monitor to emulate

them

52

VMware-style: shadow paging

 The VMM needs to virtualize memory access
 The guest maintains primary structures
 The VMM maintains shadow structures

 as seen by the processor

 There is not a 1:1 mapping between them
 The shadow structure can be viewed as a cache of

primary structures

 The logic leaves room for optimization
 And can be complex

53

More hardware virtualisation

 VT-d (IOMMU)
 Hardware virtualisation is actually slower than

VMware-style virtualisation in many use cases
 VMM intervention on guest context switches
 VM exits are very expensive
 This should be solved by nested paging (Intel EPT)

54

Ex: VMCI priv escalation

 VMSA-2009-0005

55

Ex: KVM hypercalls

 CVE-2009-3290

56

Ex: Windows VDM Zero Page Race Condition
Local Privilege Escalation Vulnerability

 Derek Soeder (CVE-2007-1206)

57

Ex: Xen debug register handling

 Jan Beulich (CVE-2007-5906)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

